1. A
2. D
3. C
4. D
5. B
6. C
7. B
8. C
9. C
10. D
11.

(a)
(ii) (population) 11/7/7 and 11
(b) PanIA 0.75 and PanIB $0.25 / 3$ PanIA to 1 PanIB

Both must be correct for the mark to be awarded, accept frequencies in form of ratio.
(c)
(i)
greatest/great frequencies of PanIA at lowest/low latitudes /
a rapid drop in frequency at ($60-65$ degrees latitude) /
lowest/low frequencies at highest/high latitudes
Answers which describe/imply the correct step-wise relationship should get credit. Answers stating or implying a negative correlation alone should not get credit.
(ii) lowest/low frequencies of PanIA at lowest/low temperatures / a rapid increase in frequency at ($8-10$ degrees Celsius) / highest/high frequencies at warmest/warm temperatures 1 Answers which describe/imply the correct step-wise relationship should get credit. Answers stating or implying a negative correlation alone should not get credit.
(d) (cod with) PanIA allele selected/favoured/better adapted to warmer water; (cod with) PanIB allele selected/favoured/better adapted to colder water; cod that survive can reproduce and pass alleles on to offspring; It takes a whole organism to reproduce in order to pass on the allele, hence we expect reference to the fish to gain this last marking point.
(e) higher frequency of $\operatorname{PanI} \mathrm{I} / \operatorname{PanI} \mathrm{IA}^{\operatorname{PanIA}}(\operatorname{cod})$ in warm (surface) water; higher frequency of PanIв/PanIB PanIB (cod) in colder (deeper) water; interbreeding results in PanIA PanIB cod/heterozygous cod;
(f) PanIA PanIA (cod) may spread further north / PanIb PanIB (cod) may move/retreat further north;
numbers of PanIA PanIA (cod) may increase / frequency of PanIA allele may increase;
PanIB PanIB (cod) may become extinct / frequency of PanIB allele may decrease;

2 max
12.
(a)
(b) growth (through increasing cell number);
embryonic development;
tissue production/repair;
(asexual) reproduction;
2 max
(c) uncontrolled mitosis/cell division

1
(d) pair of homologous chromosomes moves in same direction/does not separate during anaphase I / chromatids move in same direction/do not separate during anaphase II;
leaving a cell with an (some) extra chromosome(s)/missing chromosome(s); an example; (e.g. Down syndrome / trisomy 21); 2 max
13. (a) rough endoplasmic reticulum/RER/rough ER / ribosome
(b) vesicles are formed (from the rough ER); they are received by Golgi apparatus;
Golgi apparatus forms vesicles that transport substances to membrane;
2 max
(c) aerobic respiration takes place in the mitochondria; important for energy/ATP production;
pyruvate broken down into carbon dioxide and water;
2 max
(d) they are cut in different planes / due to three-dimensional nature/shape
14.
(a)

Both name and function required to achieve [1].
A: name: flagella/flagellum
function: used for locomotion / beats in whip-like action to propel cell;
B : name: pili/pilus
function: used for adhesion (to another cell/surface) / transfer of genetic material (between cells);
$E C F$, for one mark, can be applied if both parts of the pair are reversed.
(b) Award [1] for a similarity.
both have a plasma/cell membrane/ribosomes/cytoplasm/genetic material;
Award up to [2] for differences. Candidate must make a valid comparison, not simply describe each. Award [2 max] if features of prokaryotic and eukaryotic cells are not compared directly, item by item, although a table is not necessary.

Prokaryote	Eukaryote
naked DNA	DNA associated with proteins;
DNA in cytoplasm/no nucleus	DNA enclosed in nuclear envelope/membrane / nucleus;
$\underline{\text { 70S ribosomes }}$	$\underline{80 \mathrm{~S}}$ ribosomes;
no membrane-bound organelles	internal membranes that form membrane-bound organelles;
circular chromosome	linear chromosomes;
fission	mitosis;
no introns or exons	introns and exons;
Smaller in size(approximately) 10 microns	larger in size up to (approximately) 100 microns;
cell wall present	cell wall only present in plants/fungi; Do not accept cell wall sometimes present.

(a) Award [1] for each structure clearly drawn and correctly labelled. cell wall -with some thickness;
plasma membrane - shown as single line or very thin;
cytoplasm;
pilus/pili - shown as single lines;
flagellum/flagella -
shown as thicker and longer structures than pili and embedded in cell wall;
70S ribosomes;
nucleoid / naked DNA;
approximate width $0.5 \mu \mathrm{~m} /$ approximate length $2.0 \mu \mathrm{~m}$;
Award [4 max] if the bacterium drawn does not have the shape of a
bacillum (rounded-corner rectangle with length approximately twice its width).
Award [4 max] if any eukaryotic structures included.
5 max
(b)

passive	active
Diffusion / osmosis / facilitated diffusion	active transport / ion pumps / exocytosis / pinocytosis / phagocytosis
a second passive method (from above)	a second active method; (from above)
does not require energy	requires energy/ATP;
down concentration gradient	against concentration gradient;
no pumps needed	requires protein pumps;
oxygen across alveoli / other example	glucose absorption in ileum / other example;

Both the passive and active movements must be contrasted to receive a mark.
Award [3 max] if no examples are given. Responses do not need to be shown in a table format.
(c) occurs during aerobic respiration;
oxidative phosphorylation occurs during the electron transport chain; hydrogen/electrons are passed between carriers;
releasing energy;
finally join with oxygen (to produce water); occurs in cristae of mitochondria; chemiosmosis is the movement of protons/hydrogen ions; protons move/are moved against their concentration gradient; into the space between the two membranes; protons flow back to the matrix; through the ATP synthase/synthetase (enzyme); energy is released which produces more ATP/combines ADP and Pi ; 9 max
(Plus up to [2] for quality)

