SECTION A

Question		on	Marking point	Answers	Notes	Total
1.	a			metaphase 🗸		1

b	a	chromosomes are condensed <i>OR</i> uneven distribution of chromatin <i>OR</i> discrete chromosomes ✓	
	b	cell plate <i>OR</i> two similarly sized smaller adjacent cells ✓	2 max
	С	no nuclear membrane <i>OR</i> nucleus not clearly visible ✓	
	d	<condensed> chromosomes lined up in the centre \checkmark</condensed>	

c	a	count the total number of cells visible \checkmark	
	b	count the number of cells undergoing mitosis \checkmark) mor
	С	mitotic index= $\frac{\text{number of cells undergoing mitosis}}{\text{number of cells visable}} \checkmark$	2 max

C	Question		Marking point	Answers	Notes	Total
2.	a		a	light dependent reactions including reduction of NADP ceases \checkmark		
			b	glycerate – 3–phosphate can no longer be converted to triose phosphate so levels rise \checkmark		2

b	а	concentration would rise ✓	
	b	reduced NADP produced in the light \checkmark	2 mov
	С	glycerate -3 -phosphate converted to triose phosphate \checkmark	5 max
	d	triose phosphate converted to ribulose bisphosphate \checkmark	

3.	a	а	both boat samples grow in copper concentrations up to 0.1 mg dm^{-3}	
			<pre>whereas unpolluted site algae do not> ✓</pre>	2
		b	growth of both boat samples higher than unpolluted site at all copper concentrations \checkmark	

b	а	variation in tolerance OR some algae more copper tolerant than others \checkmark	
	b	copper kills algae that lack tolerance 🗸	3 max
	С	tolerant individuals reproduce and pass advantageous alleles onto offspring ✓	
	d	frequency of advantageous alleles rises in population ✓]

Option D — Human physiology

Q	Question		Marking point	Answers	Notes	Total
20.	a			100 % ≺greater than initial level> ✓		1
	b	i		build more muscle 🗸		1
	b	ii		thyroid damage <i>OR</i> elevated cholesterol <i>OR</i> liver damage ✓		1
I	1	1				
	C			source of energy <i>OR</i> used when glycogen stores are running out ✓		1
1			-			
	d		а	fat soluble so can pass through plasma membrane \checkmark		
			b	bind to receptors in the cytoplasm to form receptor-hormone complex \checkmark		2 max
			С	initiate transcription of specific genes 🗸		

Question			Marking point	Answers	Notes	Total
21.	a		а	detoxifies blood 🗸		
			b	breaks down erythrocytes 🗸		2 max
			с	excess cholesterol is converted to bile salts \checkmark		

b	а	liver decreases synthesis of cholesterol when dietary cholesterol rises \checkmark	
	b	dietary cholesterol inhibits enzyme catalyzing liver cholesterol synthesis ✓	2 max
	С	cholesterol from both sources used in body to waterproof skin/synthesize vitamin D/synthesize steroid hormones ✓	

c	ii	а	any cause of increase rate of hemolysis ✓	
		b	malaria 🖌	
		С	genetic ✓	1 max
		d	defects in bilirubin metabolism ✓	
		e	cirrhosis 🖌	

22.	a	а	bowed legs <i>OR</i> soft bones ✓	1 max
		b	lack of mineralization 🗸	

	b			lack of vitamin D/calcium ✓		1
--	---	--	--	-----------------------------	--	---

(Question 22 continued)

Question		on	Marking point	Answers	Notes	Total
	c		а	<i>vitamin</i> : vitamin D ✓		2
			b	<i>hormone</i> : testosterone/androgen/estrogen/progesterone \checkmark		<u> </u>

23.	a		arrhythmia	
			OR	1
			ventricular fibrillation \checkmark	

c		atrium contracting	
		image I	
	a	atrium contracting correctly marked on image 🗸	2
	b	ventricle contracting correctly marked on image \checkmark	

d		myogenic contractions	
		OR	1
		branched 🗸	

Question		Marking point	Answers	Notes	Total	
24.	a			iron 🗸		1

b		100 fetal hemoglobin	
		0 20 80 120	
	а	correct position to left of adult hemoglobin ✓	2
	b	shape similar to adult hemoglobin ✓	<u> </u>

Question	Marking point	Answers	Notes	Total
25.	a	CO_2 combines in RBCs with H_2O to produce carbonic acid/ H_2CO_3 \checkmark		
	b	catalysed by carbonic anhydrase 🗸		
	С	<carbonic acid=""> dissociates to form hydrogencarbonate ions and hydrogen ions/ $HCO_3^- + H^+$ ✓</carbonic>		
	d	dissociation of carbonic acid is a reversible reaction so can act as a buffer \checkmark		
	e	$H_2CO_3 \longrightarrow H^+ + HCO_3^- \checkmark$		
	f	hydrogencarbonate ions move out of RBCs by facilitated diffusion \checkmark		6 max
	g	the carrier protein moves a chloride ion/Cl ⁻ into RBC \checkmark		
	h	chloride shift keeps charge balance across membrane stable \checkmark		
	i	in low pH, tendency to dissociate will be low and equation will shift to left/less hydrogencarbonate plus hydrogen ions formed \checkmark		
	j	in high pH, tendency to dissociate will be high and equation will shift to right/more hydrogencarbonate plus hydrogen ions formed ✓		
	k	hemoglobin can act as a buffer combining with hydrogen ions to produce hemoglobinic acid \checkmark		